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Abstract—The focus of this study is to predict human memo-
rability - a person’s ability to remember previously seen images
or objects. Although recent works have employed deep learning-
based approaches to address the problem, they do not utilize
spatial structural information within the images. This work
investigates Graph Convolutional Networks (GCNs) and Graph
Attention Networks (GATs) to approach the problem. The object-
centric features within the images are extracted using deep
CNN-based models, which contain the structural information of
the image. A generic baseline model is created and improved
upon iteratively through structural data by constructing graphs
and attention mechanisms on the graph edge connections. The
constructed graph nodes represent the objects within the image,
and the edge connections between the nodes represent the
spatial relation to the objects. These graph embeddings are
used to train our proposed Graph Embedded Memorability
Model (GEMM), which shows significant improvements from the
baseline as the attention improves the edge connections of the
graph nodes. The model is then evaluated on the LaMem, SUN
memorability, and FIGRIM datasets. Although existing state-of-
the-art models perform well on one or two datasets, the proposed
model generalizes over all three datasets with a Spearman’s rank
correlation of 0.71 on LaMem, 0.69 on SUN memorability, and
0.59 on the FIGRIM dataset. This model achieves a new state-
of-the-art performance compared to the existing literature.

I. INTRODUCTION

In our daily lives, we constantly use visual information to
convey a message to other people. We interact and commu-
nicate with other humans and read their expressions through
the visual senses. Rather, our interaction with anything largely
depends on the proper visual information we can process.
Examples of this might be a teacher trying to teach a concept
to a student, a company trying to communicate a message
to a customer through an advertisement, or even a software
developer trying to develop a more memorable Graphical User
Interface (GUI) for improved user experience. The messages
we convey are most effective when we can remember it for a
long time. This is where the concept of memorability comes
in. Image memorability is a person’s ability to later remember
or forget a previously shown image. This is quantified as a
probability of the person remembering the image and the delay
between two observations of an image does not impact this
probability. Besides just conveying messages, memorability
has a wide area of applications, such as measuring mild
cognitive impairments (MCI) and detecting dementia, mental
disorders, autism, and other neurodegenerative diseases at an
early stage.
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Fig. 1. Spatial structural information of images represented using graphs.
It shows a core idea of our model, where we capture the object-centric
information of the image by representing each object as nodes and connecting
them using edges to create a graph representation. In the images, it can be
seen that humans, background structures, and other objects like signboards and
dolls are represented as objects with associated nodes. The graph constructed
from these nodes contains crucial information about the image and is used to
train our proposed model.

Contemporary deep learning methods can handle regularly
structured data well, such as images and texts but fail when
the data is irregular. For example, Transformers [1], and
Recurrent Neural Networks (RNNs) [2], [3] perform well
on a deterministic sequence of data in one dimension, while
Convolutional Neural Networks (CNN) [4], [5] perform really
well on grid-like structures such as images. But from the
observations of [6]–[9], It is clear that the memorability of an
image is not related to patterns or locations in the image that
are well structured. Rather it is heavily correlated to object-
centric features and how the object is positioned in the image
in relation to its surroundings. As a result, the use of models
designed for structured data has not been well generalized
among all datasets and has performed poorly on many fronts.



In this work, we examine the application of GCN [10] to
learn image memorability and how memorability correlates
to the spatial structural information of the image. The reason
behind using GCN is that we intend to handle images in an
object-centric way, with the location and relation of objects
and their neighbors represented using graphs. For this pur-
pose, we propose the Graph Embedded Memorability Model
(GEMM), which uses graph embeddings of object representa-
tions to capture the spatial structure of the image. Furthermore,
we capture the contextual mismatch (i.e., unusualness) and
local contextual information (i.e., facial expressions, anger,
happiness, and other emotions) of a scene. Although there
have been attempts to correlate local unusualness [7], [9] and
emotions [11], [12] with memorability separately, there has
not been any unified approach.

To the best of our knowledge, this is the only study on
image memorability that utilizes the recent developments in
Graph Neural Networks. In summary, the main contributions
of this work include:

• Implementation of a fully automated end-to-end deep
learning method that leverages spatial information to
predict memorability.

• Demonstration of self-attention mechanism in reducing
graph complexity.

• Generalization of the model over several datasets and use
cases establishing a new state-of-the-art performance.

II. RELATED WORK

A. The Memorability Game

Isola et al. [13], [14] pioneered the field of image mem-
orability in 2011 and introduced the Visual Memorability
Game to understand and calculate memorability of images.
They created the SUN memorability dataset [14], and since
then, other researchers have used similar or slightly modified
versions of the game to construct their own datasets. The
game’s central theme is to show images to the participants
and see whether they respond to repetitions of certain types
of images. These responses are used to give memorability
scores to the images. Studies on memorability have shown
that it is a stable property that does not vary over time [15] or
context [16]. Research has also been done on images of scene
categories and objects, which show that the memorability of
images largely depends on the objects present within an image
and their relative positions to each other. [13] and [14] used
handcrafted features such as pixel histogram, GIST [17], SIFT
[18], SSIM [19] and HOG [20]–[22] to predict memorability
scores.

B. Using Hand-crafted Features

The memorability of images is affected by several local
attributes and features, such as the placement of image regions
and local attributes in scenes. Researchers have shown that
these features and attributes contribute significantly to the
memorability of images. One study proposed by Khosla et al.
[6], [23] in 2012 proposed a model to predict the memorability
of image regions, as people tend to remember some objects

and image regions more than others. They proposed an image
encoding process using noisy memory through a probabilistic
framework, assuming that different image regions correspond
to different object groups and have different probabilities
of being remembered or forgotten. Additionally, Kim and
Yoon et al. [9] proposed in 2013 two new spatial features
that contribute to image memorability: Weighted object Area
(WOA) and Relative Area Rank (RAR). WOA considers the
size and position of objects in an image, while RAR correlates
to the relative unusualness of the size of an object. Studies
[11], [16], [24] have also found that naturally pleasing or
visually aesthetic scenes lack unusualness and negatively affect
memorability. Visual saliency [6], [11], [25], [26], image
popularity [11] and emotions [11], [12] on the other hand,
correlate positively with image memorability.

C. Deep Learning

Improvements in the field of deep learning helped generate
models that predicted memorability much better than hand-
crafted models. One such model is MemNet [11], proposed by
Khosla et al. in 2015. It is a Hybrid-CNN model trained on
the ILSVRC 2012 [27] and Places dataset. They also created
a baseline model which used HOG2x2 features and showed
that it performed better when accounting for False Alarms
(FA), which helps to minimize signal noise. Furthermore, it
was found that the model performed worse when fine-tuned
on a smaller dataset like the SUN Memorability Dataset, which
highlights the need for a larger dataset. This led to them
constructing the Large Scale Memorability Dataset (LaMem).
Fajtl et al. proposed AMNet [8] in 2018, which used transfer
learning from deep models to understand memorability better.
They used ResNet-50 [28] trained on ImageNet as their base
classification model and found that deep models that perform
well on classification tasks also perform well on predicting
memorability. Additionally, this study explains why end-to-
end deep learning features outperform specially designed
visual features and features taken from CNN models. Squalli-
Houssaini et al. [29] proposed a deep learning model that uses
a combination of CNN and Image Captioning (IC) features
to predict image memorability. They use a VGG16 model
pre-trained on ImageNet to extract features and convert the
memorability scores into four balanced classes. They then
use an encoder consisting of a CNN and LSTM to create
a text-image embedding of the image captions in 2D. This
enforces conformity of the image with its corresponding se-
mantic caption, which contains relevant semantic information
about memorability. The final memorability score is calculated
through a memorability aggregation step and shows that this
method effectively predicts memorability. On the other hand,
Perera et al. [30] proposed only training a regression network
on the final layer of a strong CNN model. They showed signif-
icant improvement in prediction scores using VGG16 as their
base CNN model. Even though RAR, WOA, and other object-
centric features show a good correlation with memorability,
there has been virtually no research on utilizing these features
for memorability score prediction. So, in this paper, we attempt



to use Graph Convolutional Networks (GCNs) [10] to build
a deep learning model that leverages this spatial structural
information.

III. PROPOSED MODELS

GCN is a natural choice for solving memorability prediction
as it can better understand inherent structural data. This is
especially useful since the memorability of images depends
mainly on the objects within the image and the relations
between these objects, which can be represented using graphs.
These interconnections form a graph-like structure that con-
tains crucial information about the nature of the image that
a GCN-based model can learn far better than any CNN or
RNN-based methods. Our final design incorporates GCN to
utilize these graph representations of images to find the overall
memorability score of the image. We first discuss a baseline
model created using generic GCN. We then improve this
model by incorporating an attention mechanism with Graph
Attention Network (GAT) [31]. Finally, we ensemble it with
an existing model, AMNet [8], to propose our novel method.
Since the proposed model uses graph embeddings of images
to estimate the memorability of images, we name our model
the “Graph Embedded Memorability Model (GEMM)”.

A. Problem formulation

Suppose, ith image of a dataset d is represented by Vi of
dimension Wi × Hi × Di. The ground-truth score of each
of these images is, yi ∈ [0, 1] which represents the overall
memorability score of the image.

A higher yi score means a highly memorable image and
a lower yi score means the image is less memorable. Within
the training dataset a set of tuples {(Vi, yi) : i ∈ [0, T ]} is
included, where the total number of training images within the
dataset d is represented by T . We train the θd parameterized
model, F end-to-end, for the dataset d so that it can predict
score, ŷj very close to the original ground truth score, y∗j for
a given image Vj . So, ŷj is formulated as follows:

ŷj = F(Vj ; θd), s.t. ŷj ≈ y∗j (1)

We incorporate the spatial structural information of the image
in the model. So, we generate a graph from the image that
represents the structural information. Let’s call this graph,
G = (A,V, E) where, V is set of vertex, E is a set of edges
and A ∈ RN×N is the edge adjacency matrix of the graph G.
The vertices are the extracted structural features of the image
and the edges are the relationships between these features
represented as connections. The adjacency matrix indicates
which of the vertices are connected to others using a matrix.

Now, for each of the training images Vi in the dataset d we
have a feature graph representation of Gi. So, the equation 1,
for predicting a continuous score, ŷj near the ground-truth, y∗j
for a given feature Gj becomes,

ŷj = F(Gj ; θd), s.t. ŷj ≈ y∗j (2)

Different parts of the image play essential roles while mea-
suring the overall memorability [6], [7], [9], [23]. Empirical

results show that such roles vary from one image to the
other. Let, Mj ∈ RWj×Hj×Cj be the self-attention map of
the different parts of the image representing their overall
importance for jth image. By analyzing Mj of the image
within the dataset d, we can get reasonable insights about
prediction scores along with how different objects contribute
to the memorability score.

B. Model Overview

Consider we have an image Vi and its graph embedding,
Gj consisting of n nodes, which are specified as sets of node
features, (h⃗1, h⃗2, . . . , h⃗n) along with an adjacency matrix A,
such that Aij = 0 if i and j are not connected, and 1 if
they are connected. A GCN layer computes a new set of node
features, (⃗h′

1, h⃗
′
2, . . . , h⃗

′
n), based on the graph structure and the

input features.
To get higher-level representations, every GCN layer starts

with shared node-wise feature transformations, which are
specified using a weight matrix W. This transforms the feature
vectors into g⃗i = Wh⃗i. Afterwards, the vectors g⃗i are usually
combined at every node in some way.

Generally, to satisfy the property of localization, a graph
convolutional operator is defined as a combination of features
across the neighborhoods; defining Ni as the surrounding
neighborhood of the node i. The final output features of node
i are then defined as:

h⃗′
i = σ

∑
j∈Ni

αij g⃗j

 (3)

where, σ is the activation function, and αij specifies the weight
factor or importance of node j’s features in relation to node
i.

We use this layer that maps an input graph embedding
Gj to a feature vector output of h⃗′

i as the building block
for our model. We create a generic GCN architecture with
3 GCN layers. It starts out with the extracted image features
as an input to the network. The inputs are a graph embedding
of 1000 nodes, each with 1024 features. These are passed
through 3 GCN layers with relu activations. The final GCN
layer sends the features to a mean pooling layer where the
features are converted to a vector of 1000 elements. This is
then sent to a network of fully connected dense layers with 1
hidden layer of 64 neurons and a single output neuron. This
final dense layer is the regression network that gives us the
overall memorability score of the image. GCNs are better at
understanding long-ranged interaction between objects better
than CNNs. Typically, CNNs need to be very deep in order to
encode these connections. A GCN can achieve the same result
with a shallower network by simply having an edge connecting
the two points.

C. GEMM

In order to improve the generic GCN model and incorporate
graph attention in our model, we define αij implicitly and
use self-attention over the graph node features. Veličković et
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Fig. 2. GEMM: An ensemble of the AMNet [8] model and attention guided GCN for memorability prediction. It takes the final layer output of the ensemble
model and passes it through a weighted sum layer to generate the final output. The graph embedding is generated from the Regional Proposal Network (RPN)
of the Mask R-CNN model. The output feature matrix is of dimension 1000× 1024 with 1000 regions of object proposals and each with a vector of 1024
features.

al. [31] employed this idea as it was in fact self-sufficient
for top results on machine translation, as demonstrated by the
Transformer architecture [1].

Generally, αij is computed as a by-product of attention
mechanism, a : RN×RN → R, which computes unnormalised
coefficients eij across pairs of nodes i, j, based on their
features:

eij = a(⃗hi, h⃗j) (4)

The graph is injected by only ever allowing node i to at-
tend over the nodes within its neighborhood, j ∈ Ni. The
coefficients for each neighborhood are typically normalized
using the softmax function to allow for comparison across
neighborhoods:

αij =
exp(eij)∑

k∈Ni
exp(eik)

(5)

The framework is not affected by the specific attention
mechanism used (represented by the variable a) and can
be trained along with the rest of the network in a single,
unified training process. Thus, using this update function, the
attention-guided block performs better than that of the generic
GCN. Although the attention-guided graph convolutional net-
work is implemented from an object-centric view in order to
capture the relationships between objects in a scene, it can
recognize contextual mismatch (i.e., unusualness). However,
this ignores the local contextual information in a scene, such
as emotions (e.g., anger, happiness), that can further influence
the memorability score. Therefore, to incorporate both the
information from a scene, we ensemble AMNet [8] as our
local contextual network to improve the performance further.
Thus, the proposed model can capture a scene’s contextual
mismatch and local contextual information.

IV. EXPERIEMNTS

Datasets: We have used three datasets that have been utilized
by current state-of-the-art methods. They are the LaMem
dataset [11], the SUN memorability dataset [14] & the FI-
GRIM dataset [15]. These datasets were created with versions
of the original memorability game. All the data were collected
from human participants and the scores were annotated by
the statistical performances of the participants. (1) LaMem
The images for the LaMem dataset was sampled from other
datasets such as MIR Flickr [32], AVA dataset [33], SUN [20],
image popularity dataset [34], Abnormal Objects dataset [35],
aPascal dataset [36], affective images dataset [37], MIT1003
[38] and NUSEF [39] dataset. It contains 58,741 images,
which is approximately 27 times the size of the next largest
dataset, containing large variance within its images. The
images are split into train, test, and validation sets for easier
implementation. Out of the 58,741 images, the train splits
contain 45,000 images, the validation set contains 3741 and
the test set contains 10,000 images. (2) SUN Memorability
Dataset The SUN dataset [20] is a large dataset created for the
sole purpose of providing an annotated collection of images
for various research purposes such as neuroscience, robotics,
computer vision, human cognition, perception, etc. It consists
of 108,753 images in 397 different categories. The SUN
Memorability dataset [14] was created by randomly sampling
the SUN dataset [20]. The images were cropped and scaled to
a 1:1 proportion of 256 pixels. 8220 images were selected as
filter images and 2222 as target images. Among these, there
was a 50-50 split for the training and testing images; both sets
contained 1111 images. (3) FIGRIM The Fine Grained Image
Memorability (FIGRIM) [15] Dataset was also subsampled
form the SUN dataset [20]. The images were sampled from
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Fig. 3. Visualization showing the histogram of memorability scores distributed
over the images in the three datasets. It shows that most of the images within
the dataset have a memorability score between 0.6 to 0.8.

21 different scene categories and near duplicate images were
manually removed. The images were then cropped to 1:1
resolution of 700 pixels. A total of 9428 images were selected
and a quarter of the images were chosen as targets while the
rest were fillers. The target images consisted of 1754 images,
and the filler images consisted of 7674 images.

Finally, a histogram of memorability score distributed on
the datasets is shown in Figure 3. It can be seen that most
of the images within the datasets are within the 0.60 to 0.80
score range.

Evaluation metric: Prediction of image memorability falls
under the category of supervised regression tasks. Usually,
regression models are evaluated using error metrics such as
Mean Absolute Error (MAE), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), etc. But most of the
studies on image memorability [8], [11], [13], [14], [29], [30]
evaluate their model on Spearman’s rank correlation score
which measures the monotonic relation between two functions.
So, even if the two functions are not equal or are even linear, if
the data points have greater input (i.e., the domain) values than
that of a given data point, they will also have a greater output
(i.e., range) value. In a way, this is similar to the Pearson
correlation. Still, the Pearson correlation only calculates the
linear relation between two functions, whereas Spearman’s
rank correlation calculates the monotonic relation no matter
whether they are linearly related or not. RMSE is used in [8],
[14] in order to find the overall errors of the models. This
often gives empirical results to show if a model overfits or
underfits to a dataset.

Compared methods: We compare our work to four categories
of methods: (1) Hand-crafted Feature Models: Some of the
earliest methods [13], [14], [16] used pixel histograms, HOG,
SSIM, etc features to predict memorability scores. (2) Image
Features: Most deep learning methods [6], [8], [11], [30]
either learn features from the images or use features from
existing CNN to predict scores. Some of these methods [8],
[30] proposed learning only the final regression output of a
pre-trained classification model. (3) Image Captioning (IC)
Features: One of the methods [29] uses CNN features from a
pre-trained model along with IC features from the word2vec
representation of manually annotated objects. (4) Baseline:
We propose a baseline GCN model for comparison with our
method. We create a generic and attention-guided GCN model
and compare both with our proposed method.

TABLE I
THE TABLE SHOWS THE SPEARMAN’S RANK CORRELATION (ρ) SCORE OF

DIFFERENT MODELS COMPARED ON THE THREE DATASETS. IT CAN BE
SEEN THAT THE PROPOSED FINAL METHOD, GEMM-2 OUTPERFORMS ALL

OTHER MODELS ACHIEVING STATE-OF-THE-ART PERFORMANCES ON
IMAGE MEMORABILITY PREDICTION. THE BEST-PERFORMING MODEL IS

SHOWN IN GREEN AND THE SECOND BEST IN BLUE.

Models
Datasets

LaMem SUN memorability FIGRIM
AMNet [8] 0.68 0.65 0.49
MemNet [11] 0.64 0.63 -
Isola et al [14] - 0.46 -
MemBoost [30] 0.67 0.66 0.57
Squalli-Houssaini et al [29] 0.72 0.59 0.48
Human consistency 0.68 0.75 0.74
Baseline 0.58 0.54 0.46
GCN (with attention) 0.62 0.61 0.54
GEMM 0.71 0.69 0.59

Implementation details1 Since the datasets consisted of im-
ages but the model utilized graph structures, the data had to
be preprocessed before the features were extracted and sent
to train the model. The images were loaded one by one and
reshaped into a size of 250×250px. They were randomly
cropped and rotated about their centers.

These images were then sent to a Mask R-CNN [40]
for object segmentation. It uses regional proposal networks
(RPNs) to efficiently generate a set of object proposals, or
regions of interest, that are likely to contain objects in an
image. It uses the feature pyramid network (FPN) of a Mask
R-CNN with ResNet-50 [28] pre-trained weight as the base
model. The features are extracted from the 2nd fully connected
layer of the RPN from the model. This returns a 1000× 1024
sized matrix of 1000 regions containing possible important
objects, each with 1024 features. Each of these 1000 regions
is treated as an object considered a node for the graph. Initially,
the 1000 nodes are fully connected with each other forming
a graph. This graph from a single image is considered the
graph representation or embedding of the image. We then send
this graph embedding to the model for training a GCN model
and a final regression network to predict the memorability
score of the input image. The model would still perform well
if objects in the images are sparse because the number of
proposed regions stays the same regardless of object sparsity.
Memorability is not correlated with object sparsity. Rather, it
is dependent on the unique number of fixation points [41] in
the image.

A. State-of-the-art results

In Table I, we compare our model with the existing methods,
showing the performance of different datasets on different
models. The performance of the models is shown using Spear-
man’s rank correlation coefficient. The table shows existing
models along with the human consistency on the top and then
shows the proposed baseline models and GEMM below. Our
observations from the results are as follows: (1) Using hand-
crafted features is not a good idea as it does not capture even

1Codes and evaluations are available in https://github.com/TahsinTariq/
GEMM

https://github.com/TahsinTariq/GEMM
https://github.com/TahsinTariq/GEMM


TABLE II
THE ROOT MEAN SQUARED ERROR (RMSE) OF THE PROPOSED MODELS

COMPARED ALONG WITH THE EXISTING METHODS. THE
BEST-PERFORMING MODEL IS SHOWN IN BOLD. IT CAN BE SEEN THAT
RMSE IS AN INDICATOR OF THE OVERALL ERROR OF THE MODEL AND
CAN EXPLAIN THE PERFORMANCE OF THE MODEL WHEN OVERFITTING.

Models
Datasets

LaMem SUN memorability FIGRIM
AMNet [8] 0.008 0.011 0.016
Isola et al [14] - 0.017 -
Baseline 0.011 0.013 0.021
GCN (with attention) 0.010 0.005 0.014
GEMM 0.008 0.021 0.013

the entirety of the information within the image. Because of
this, the model by Isola et al. [13], [14] performs the worst
among all the models compared. (2) When comparing with
methods that utilize learned features or features from CNN
models, we see that even our baseline GCN with attention
achieves similar results while GEMM achieves state-of-the-
art performance on all three datasets. It is also interesting
to note that on the FIGRIM dataset, our baseline generic
GCN model achieves similar performance on models that have
outperformed human consistency on the LaMem dataset. Fur-
thermore, this is done so without any finetuning of the model.
(3) Using IC features, Squalli-Houssaini et al. [29] reported
the highest performnce on the LaMem dataset. However, his
model did not generalize over the other two datasets and in fact
performed significantly worse than all other methods. While
our proposed GEMM did not outperform his method on the
LaMem dataset, it was well within the margin of error. On the
contrary, GEMM not only performed better than his method,
but it also did so by a very large margin. It is also seen that the
attention-guided GCN also outperformed his models on both
the SUN memorability and the FIGRIM dataset. (4) GEMM
outperforms the baseline model by a huge margin. This can be
attributed to the fact that even though the baseline has all the
available spatial structural information of the image, it does
not know which part of the image to give more importance
over the other. This is because, in generic GCNs, the weight
of the edges connecting the nodes is set to one. Because these
nodes represent objects in the image, the model gives the
same importance to all the objects. But since memorability
is largely dependent on specific objects in the image, this
method does not perform that well. This however changes
when we introduce the attention-guided GCN. This model sig-
nificantly increases the performance of the generic GCN. This
is because the graph attention mechanism is better capable
of understanding which object nodes consist of features that
influence memorability. This performance is improved even
further by ensembling it with the AMNet model, which we
propose as GEMM.

The Spearman’s rank correlation is a good indication of the
monotonic relation between the reference and observations.
But it is unable to indicate the numeric error within them.
This error is better represented by the RMSE error values. In
Table II we show the RMSE error of the available models

TABLE III
THE BASE MODEL WAS A MODEL WITH 3 GCN LAYERS AND 4 FULLY
CONNECTED HIDDEN LAYERS. THE FULLY CONNECTED LAYERS WERE
RELU ACTIVATED WITH THE OPTIMIZER BEING ADAM AND THE LOSS

FUNCTION BEING HUBER LOSS. THE EXPERIMENTS WERE CONDUCTED ON
THE SUN MEMORABILITY DATASET.

GCN Loss Function Activation Function
layers Huber MSE ReLU Sigmoid Tanh

1 0.685 0.682 0.682 0.641 0.641
2 0.675 0.678 0.669 0.661 0.681
3 0.691 0.689 0.689 0.641 0.671
4 0.672 0.683 0.669 0.666 0.685

on the three datasets. The table shows that as the models
perform better and better, their RMSE error decreases. This is
expected as the model better approximates the memorability
scores and is clearly illustrated in the RMSE errors on the
FIGRIM dataset. However, oftentimes models may overfit to
a dataset and fail to produce a reasonable performance even
though it has a lower overall RMSE error. This is evident with
the SUN memorability dataset, where even though attention
guided GCN has a very low RMSE error, it does not reflect
so in with its Spearman’s rank correlation score. It is clear that
the model overfits on the dataset to some degree. This can be
seen alleviated in GEMM as the RMSE error increases and so
does the performance. As a consequence, the model does not
overfit to the data and achieves state-of-the-art on the dataset.

B. Ablation study

In Table III we perform ablation studies on different parts
of the GEMM architecture. We show the performances of
different components as we increase the GCN layers of the
model on the SUN memorability dataset. In all cases, the
performance of the model increases with the GCN layers
up to 3 layers. It adds a fourth layer showing a significant
performance drop in the performance. This is due to the
message-passing layer of the GCN model becoming deeper
and deeper. Nodes in the graph aggregate the messages from
their neighboring nodes which in turn gather messages from
even deeper neighbors. At some point, all of the nodes in
the graph aggregate messages from all other nodes because of
the depth traversed. This smoothens out the messages and the
performance no longer improves as expected. In our model,
this GCN smoothing happens at the fourth GCN layer. We
also show that using Huber loss is preferable to MSE loss
as Huber loss is less sensitive to outliers in the data and is
generally used for robust regressions. We also compare the
different activation functions which show that the sigmoid
function does not perform that well while ReLU and tanh
perform very similarly to each other. ReLU is preferred over
tanh as it not only performs better, it has a more consistent
performance.

C. Qualitative results

Figure 4 shows two plots that explain why GEMM performs
better over other methods on the SUN memorability dataset.
In particular, we compare it with the AMNet [8] model.
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Fig. 4. (a) Ground truth and GEMM prediction ranks on the SUN memora-
bility dataset. The rank correlation score is 0.69. (b) Each point represents an
image with the Y axis showing the ground truth memorability score and the
X axis showing the difference between the AMNet and GEMM prediction
errors. The points with positive values (right of the red line) show a win
for GEMM and negative values show AMNet wins. If the error distribution
was symmetric, their performances would have been similar. But since more
points are on the positive side, it indicates GEMM performing better.

The first plot shows Spearman’s rank correlation of GEMM
predictions compared to ground truth ranks. The points in
the plot represent images, with the X-axis being the rank
of the ground truth score and the Y-axis representing the
rank of the predicted score of GEMM. This gives an overall
Spearman’s rank correlation score of 0.69 for the dataset.
We can see how GEMM performs better than AMNet in the
second plot, which shows the difference in prediction errors
for the image samples. The red line represents zero prediction
error between the two models. The images on the right side
of the red line are closer to the ground truth for GEMM
predictions and the images on the left for AMNet predictions.
The plot is not evenly distributed about the center red line,
which means that there is a clear difference between the two
model performances. This difference is that the plot leans
heavily to the right-hand side of the red line, representing
more prediction wins for GEMM over the AMNet model.

We show some images with varying memorability from
the three datasets in Figure 5. The memorability of shown
images increases from left to right in each dataset. The AMNet
and GEMM prediction is also shown for the images. The
images with high memorability scores contain features that
stand out from the scene. Most of them seem to be images
of humans, animals, or human-like depictions. Fewer features
stand out for images with medium memorability scores, but
still, the different parts of the images are clearly defined.
There are hardly any distinguishing features for images with
low memorability. The scenes are generic and flat, with few
objects standing out. There are not any humans or animals
present in these images either. The prediction scores show
that GEMM is almost always closer to the ground truth
performance than AMNet. This performance is just for one
dataset; it is consistent over all the datasets.

V. CONCLUSION

In this work, we propose GEMM, an end-to-end automated
deep learning model for predicting memorability. A lot of
the current literature use hand-crafted features and those that
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Fig. 5. Qualitative results of image memorability. The high memorability
images contain distinguishable objects within the scenes, whereas as the
memorability decreases, so do features that ”stand out”. For each of the
images, the numbers indicate the following: Ground Truth Score; Predicted
scores from AMNet [8]; Predicted scores from GEMM.

have developed an end-to-end model do not leverage the
contemporary developments in deep learning techniques. Their
limitation can be summarized in a number of ways. Firstly,
even though memorability is largely dependent on the relative
positioning of the objects within the image [6], [7], [9], these
models fail to capture their spatial information in a meaningful
way. Secondly, these methods are specialized to one or a few
datasets and do not generalize over a large amount of data.
This is rather important as the variability in real-world data
can drastically change the overall perception of memorable
images [11]. Finally, only a handful of studies have focused
on using the attention mechanism, which has been proven to be
very effective in predicting memorability scores [8], [29]. To
overcome these limitations we have introduced a Graph Con-
volutional Network (GCN) based approach leveraging Graph
Attention (GAT) mechanism for memorability predication. We
extract the spatial information of an image and employ an
attention mechanism to learn the importance of the edges of
the graph in order to understand the object-centric relations.
We use these attentions to train our GCN-based model end-to-
end to predict the overall memorability of images. We show
that our model can generalize over a large number of datasets
and validate our performance claims by comparing our results
to current literature. We have found that on the two of three
most widely used datasets (SUN memorability dataset [14]
and FIGRIM dataset [15]), our model achieves state-of-the-art
performance. Furthermore, it is on par with existing works on
the third dataset, the LaMem dataset [11].
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